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Tokamak edge region encompasses boundary layer 
between hot core plasma and material walls 

§ Complex geometry 

§ Rich physics  
(plasma, atomic, material) 

§  Sets key engineering constraints for 
fusion reactor  

§  Sets global energy confinement 
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BOUT (BOUndary Turbulence) was originally developed at 
LLNL in late 1990s for modeling tokamak edge turbulence* 

§  Boundary Plasma Turbulence has a different 

characters than in the core and play an important role 

in the core confinement 

§  BOUT is an unique code to simulate boundary plasma 

turbulence in a complex geometry 

§  Observed large velocity shear layer 

§  Proximity of open+closed flux surface 

§  Presence of X-point 

§  BOUT/ BOUT++ codes has being applied to DIII-D, C-

MOD,NSTX, MAST, ITER scenarios, ··· 

 
* X.Q. Xu and R.H. Cohen, Contrib. Plasma Phys. 38, 158 (1998) 
Xu, Umansky, Dudson & Snyder, CiCP, V. 4, 949-979 (2008).  
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BOUT++ is a successor to BOUT,  
  developed in collaboration with Univ. York* 

2000                                     2005                                  2011 

Original BOUT, tokamak applications on boundary 
turbulence and ELMs with encouraging results 

BOUT-06: code refactoring using differential operator 
approach, high order FD, verification 

BOUT++: OOP, 2D parallelization, applications to 
tokamak ELMs and linear plasmas 

• Umansky, Xu, Dudson, et al., , Comp. Phys. Comm. V. 180 , 887-903 (2008).  
  Dudson, Umansky, Xu et al., Comp. Phys. Comm. V.180 (2009) 1467. 
  Xu, Dudson, Snyder  et al., PRL 105, 175005  (2010). 

ü Gyro-fluid extension 
ü RMPs 
ü Neutrals & impurities 
ü Preconditioner 
ü Massive concurrency 

B    UT++ 
Boundary Plasma Turbulence Code 
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BOUT and BOUT++ have been products of broad 
international collaborations 

Lodestar Research Corporation 

Institute of plasma Physics 
Chinese Academy of Sciences 
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The workshop goals: 
o  to prepare researchers to 
use and further develop the 
BOUT++ code for edge 
turbulence, transport, and ELM 
simulations of magnetic fusion 
devices; and  
o  to promote effective 
collaboration within the BOUT 
community and beyond.  

BOUT++ workshop  http://bout2011.llnl.gov  
September 14 – 16, 2011  

There are 45 workshop attendees from five countries: China, 
PRC (3), Japan (2), Korea, ROK (3), UK (2) and USA (35) 

https://bout2011.llnl.gov 
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BOUT++ workshop  http://bout2011.llnl.gov  
September 14 – 16, 2011  

https://bout2011.llnl.gov 

Special lectures on 
• BOUT++ overview, status, code structures 
• Solvers and numerical Schemes 
• Gyro-fluid extensions 

Hands-on examples 
• Basic plasma instabilities 
• Advanced example on ELM simulations 
• BOUT++ applications to tokamaks & linear machines 

Lecture notes & hands-on examples are online 
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BOUT++ Code can be run at high concurrency 

§  Direct numerical simulation of plasma turbulence 

§  Fluid equations based on Braginskii 

equations for Ni, Te, Ti, V||e, V||i, and  ϖ  

§  Time integration by implicit ODE solver 

CVODE and PETSc 

§  Parallel implementation with MPI 
•  BOUT++ provides an object-oriented  
      framework in C++ 

–  Modular!!! 
•  MPI parallelization allows ideal strong 
      scaling to hold up to 10,000 cores! 
•  Multi-developer version control allows 
      for efficient development 

P Narayanan et al. Performance 
Characterization for Fusion Co-design 
Applications". In: Proceedings of CUG (2011). 
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 Lundquist Number (S) is a 
dimensionless ratio of the 
resistive diffusion time to the 
Alfvén time 
–  S ~107 in C-Mod EDA pedestal 

Separatrix 

Open field lines 

Zero Current 
beyond Separatrix 

Pedestal 

C-Mod Equilibrium EDA H-Mode Parameters       
used as BOUT++ Input (1110201023.00900) 

η
µ ARvS 0=
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BOUT++ Calculations Show C-Mod 
EDA H-Modes Resistively Unstable	



      BOUT++ calculations show that 
Diamagnetic Effects Damp Higher Mode 
Numbers, yielding the growth rate peaks 
at n=25, consistent with measurements. 

 

Preliminary Nonlinear Simulations have 
begun --- Mode Saturation and Turbulent 
Steady-State have been Observed. 
Comparisons with experimental 
measurements will begin. 
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BOUT++ simulations for DIII-D ELMy H-mode 
  shot #131997 at reduced J|| 

ü Ideal MHD stability boundary is consistent with infinite-n BALLOO code 
ü Inclusion of e- inertial eliminates the stability boundary 
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BOUT++ simulations for one of the latest designs of the ITER 15 MA 
inductive ELMy H-mode scenario (under the burning condition) 
Ø   Simulations starting from equilibrium generated by the CORSICA code.  

separatrix 
• Marginal unstable pedestal case, Tped=5.5keV, nmax=15 
• The calculations impact previous ITER ELMy H-mode scenario design as it was 
based on the pedestal height Tped=4keV 

X.Q.Xu, B.D.Dudson, P.B.Snyder, M.V.Umansky, H.R.Wilson and T.Casper, Nucl. Fusion 51 (2011) 
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BOUT++ simulations for one of the latest designs of the ITER 15 MA 
inductive ELMy H-mode scenario 

 It is numerical challenge to simulation ITER divertor 
geometry, requiring high resolutions nx > 1000, ny>100, 
even for linear mode. Ideal MHD 

Ideal MHD 

X.Q.Xu, B.D.Dudson, P.B.Snyder, M.V.Umansky, H.R.Wilson and T.Casper, Nucl. Fusion 51 (2011) 
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BOUT++ simulations show radial and poloidal mode structures and  
for the ITER 15 MA inductive ELMy H-mode scenario 

X.Q.Xu, B.D.Dudson, P.B.Snyder, M.V.Umansky, H.R.Wilson and T.Casper, Nucl. Fusion 51 (2011) 



15 

Nonlinear simulations of  
peeling-ballooning modes  

with anomalous electron viscosity  
in ELM crashes 
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The Nonlinear System of Equations for Simulating    
Non-Ideal MHD Peeling-Ballooning Modes 

ü Using hyper-resistivity ηΗ	



SH = µ0R3vA/ηH = S/αH 
 

ü After gyroviscous 
cancellation, the 
diamagnetic drift modifies 
the vorticity and additional 
nonlinear terms 
ü Using force balance and 
assuming no net rotation,  

Er0 = (1/NiZie)∇┴Pi0 

ü Using resistive MHD 
term, resistivity can be 
renormalized as 
Lundquist Number 

S = µ0RvA/η 

Non-ideal physics 
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Equilibrium current and pressure profiles. 

Major Radius R(m) 

Z(m) 
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512x64x64,  

S=108 & SH=1012 
 

Pressure fluctuation 

 

contours-- poloidal 

cross section 

Perturbed pressure Contours  
from Nonlinear P-B modes 

2µ0δp/B2 
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512x64x64,  

S=108,SH=1012 

 

Pressure profile:  

 

pressure vs. radius and 

poloidal angle 

Pressure Profile from BOUT++  
Nonlinear P-B modes 

2µ0<P>/B2 P=P0+<δp>	



θ	



ψ	

 Outer 
midplane	
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512x64x64,  

S=105 & SH=1012 

 

Pressure fluctuation 

 

contours-- poloidal 

cross section 

Perturbed pressure Contours  
from nonlinear P-B modes 

2µ0δP/B2 
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512x64x64,  

S=105 & SH=1012 

 

Pressure profile:  

 

pressure vs. radius and 

poloidal angle 

Pressure Profile from 
Nonlinear P-B modes 

θ 

ψ 

2µ0<P>/B2 P=P0+<δp>	



θ	



ψ	

 Outer 
midplane	
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Flux-surface-averaged pressure profile 2µ0 <P>/B2 vs S with SH=1012                 
low S -> large ELM size, ELM size is insensitive when S>107  

(1) a sudden collapse:  P-B modes -> magnetic reconnection -> bursting process 
(2)  a slow backfill as a turbulence transport process 

ELM size= ΔWped/ Wped 
 
ΔWped= the ELM energy loss 
 
Wped =pedestal stored energy 

R1	

 R2	
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For lower S (106), the reconnection region grows 
and the pedestal collapse becomes much larger. 
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Higher order differencing scheme is essential 
for ELM & turbulence simulations 

P2-1 T. Xia, X. Xu, B. Dudson, and J. Li, 
Nonlinear Simulations of Peeling-Ballooning Modes with Flow Shear and 
RF Sources, Wednesday afternoon 

•  The lower order differencing method results in smaller growth rate 
and much smaller saturate pressure perturbation.  

•  Lower order method reduces ELM size by more than 50%. 

rms(2µ0p/B2) 


